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1. INTRODUCTION

The problems of testing the hypotheses on the structures
of the covariance matrices of the real multivariate normal
populations received considerable attention in recent years.
But, not much work was done on the covariance structures of
the complex multivariate normal populations. Investigations
on covariance structures of the complex multivariate normal
populations have important applications in the area of inference

on multiple time series since certain estimates of the spectral

density matrix of the multivariate stationary Gaussian time
series are approximately distributed as the complex Wishart
matrix. The object of this paper is to investigate the null

and nonnull asymptotic distributions of the likelihood ratio
statistics for testing the hypotheses on the covariance struc-
tures of the complex multivariate normal populations. For

some discussions on the applications of the complex multivariate
distributions, the reader is referred to Brillinger (1974),

Hannan (1970) and Krishnaiah (1976).

In Section 3 of this paper, we derived the asymptotic null
distribution of the likelihood ratio statistic for multiple
independence whereas Section 4 is devoted to the corresponding
distribution in the nonnull case under certain alternatives.

An expression is derived in Section 5 for the asymptotic null
distribution of the likelihood ratio statistic for multiple
homogeneity of the covariance matrices of the complex multi-

variate normal populations. In Section 6, we derived an ex-




pression for the asymptotic nonnull distribution of the like-

lihood ratio test statistic for homogeneity of the covariance
matrices of two complex multivariate normal populations under
certain alternatives. The hypotheses considered in Sections

3 - 6 arise in studying certain linear structures of the co-
variance matrices. For a discussion of these problems in th:
real case, the reader is referred to Krishnaiah and Lee (1974).
The expressions obtained in this paper are in terms of the

beta serjies. In the null cases, it is found that the accuracy
of the approximations based on the first terms of the asymptotic
series aresufficient for many practical purposes. Krishnaiah,
Lee and Chang (1976) approximated the null distributions of
certain powers of the likelihood ratio test statistics for
multiple independence and multiple homogeneity of the covariance
matrices of the complex multivariate normal populations with
Pearson's Type I distributions. But these approximations are
based upon empirical investigations, whereas the investigations
in the present paper are analytic in nature. In the real case,
Rao (1951) gave a useful approximation, in terms of beta series,
for the null distribution of certain power of the multivariate

beta matrix.




2. PRELIMINARIES

In this section, we define some notation and give some
lemmas which are needed in the sequel.

Let f(x) be a funczion of the real variable x defined
for x > 0. Then, the Mellin's integral transform of f£(x)

is defined (e.g., see Titchmarch (1937)) as

M{£()|t) = J x " Lle(x)ax (2.1)

o
where t is a complex variate. If f(x) is absolutely contin-

uous in (0,1), then

M{£(-)|t}x"tat. (2.2)

1 c+iw
£(x) = 577 J

c-iw

Note that when f(x) = (1-—x)g'1, 0 < x<1,

1
M{£() |t} = f x*"1(1-x)8 lax = LE2I(E)
0 r(t+g)

for Real (t) > O and Real (g) > 0. Hence

c+iw g-1
L J JLE) ptyp = LX) T s, (2.3)
2mi e [(T+8) F'(g)

The following lemma was proved by Nair (1940):
Lemma 2.1. Let ¢(t) = J xp(x)dx where p(x) is the density
of the random variable x. If
¢(t) = 0(t™V) (2.4)

with Real (t) tending to infinity, then ¢(t) can be expanded

as




¢(t) = ‘ZO Rif(t+a)/T(t+a+v+i) (2.5)
1=

where a is any constant.

Lemma 2.2.
o .
Consider the series Z aixl which converges to the
i=1
function g(x) in the neighborhood of x=0 (or the asymptotic

expansion of g(x) when x=0). Then

@
exp{g(x)} =1+ ] B,x (2.6)
i=1
where Sj's satisfy the recurrence relation
1 3
. = ka . ’ =1, 2.7
BJ 3 kil kBJ—k Bo ( )
We use the following notations as defined in James
(1964). The complex multivariate gamma functions fp(a)
and fp(a,K) are given by
= p(p-1)/2 ¥ -
F (a) =7 I I'(a-i+l). (2.8)
P i=1
X p(p-1)/2 P -
Fp(a,K) =7 I F(a-1+1+ki) (2.9)
i=1

where <« = (k .,kp) is a partition of the integer k such

1’k2"'
that kli"'ikpio and k = k1+...+kp. The transpose and con-
jugate of a complex matrix B are denoted by B' and B respec-
tively. Also, let EK(A) denote the zonal polynomial of a
Hermitian matrix A, (i.e., A = 4 )

Lemma 2.3. For any integer r, variate x and Hermitian positive

definite V, we have

A et M e e




) = x¥ (tr )T etr (xv) o
k=r « (k-r)! (2.10)
‘E Zxkil(K)CK(V) ”
= (x"tr Vi-x tr V t ' 0
koo & o ) etr(xV) (2.11)
® *3. (<)E (V)
vyl L X = (x™2¢r v3(tr v)T-xT (er VT
k=r « (k-r)!
+ 2r xr+l'trV2(tr V)r-l-rxr(tr N
+ r(r-1)x%tr V2(tr V)T 2%tetr(xV) (2.12)
k-2, .=
© x7aJ(k)C (V)
;o —L ~«x = (x*(tr v$)2% 4 4x3 tr v3-2x® tr v tr V2
k=0 « k!
+ 3x2(tr V)2-4x2 tr V2-+x tr V} etr(xv)
(2.13)
o xFio (k)€ (V)
7y —2 ko (2x® tr v34ax2(er M)2-3x%tr V2
k=0 < K!
+ 2x tr V} etr(xV) (2.14)
where
51(.<) = § k.(k.-2j)
PERS R
i (k) = 2 E Kk (k2-3jk,.+3;2) (2.15)




The above lemma was proved in Hayakawa (1972). We need the

following in the sequel.

From Hayakawa (1972), Lemma 1

(8, ()+OE (V) = tr(as)2E (Vg _ | (2.16)

{35§(K)-2§2(K)+6k§1(K)—651(K)+3k2-2k}6K(V)

- [S(tr(Aa)3)+3(tr(A3)2)2]éK(V) | (2.17)

v=A

where A is a diagonal matrix of eigenvalues of V, 3 is the

Hermitian differential operator matrix

- 3 +i - _ (2R . o .l
3 = 3p+idy, 3 = (3,4), 3p = (355), 31 = (35,)

and
B (1+6a8) 3 3T (1—5a8) 3
0.8 2 avR ’ O-B 2 «VI
aB °YaB
where
l, a=8
V=(v )= (VB +ivl )y & =
af af " aB aB 0, a#B
By definition of zonal polynomial
p _ k
) C (V) = (tr V)". (2.18)
K
and Eq. (2.19)
~ ~ _ s an2 k _ k
z al(K)CK(V) = tr(A3)"(tr V) |V=A k(trv)

k(k-1) tr V2(tr ¥ 2k(er ¥, (2.19)




Multiply both sides of Eq. (2.1€) by él(z) and sum over «,

by applying Eq. (2.19), we have

(3k2-2k) (tr V)¥-2k2(k-1) tr vZ(tr v)E~2

.2, .=
E 47(x)C (V)

+

4 k(k-1)(k-2) tr V3(tr v)E-3

k(k-1)(k-2)(k-3)(tr v2)2(tr V)E %, (2.20)

+

From Eq. (2.17) and Egs. (2.18), (2.1%), (2.20), we obtain

(3 K2-k)(tr M)¥ - 3k(k-1) tr vi(tr v)E2

A~

52(<)6K(V)

3

+ 2 k(k-1) (k-2) tr V° (tr V)53 . (2.21)

Egs. (2.18) - (2.21) are needed subsequently. Here we note

that Lemma 2.3 follows by multiplying both sides of Egs.

. k
(2.18)~- (2.21) by %T and summing over k.




3.ASYMPTOTIC DISTRIBUTION OF THE LIKELIHOOD RATIO

STATISTIC FOR TESTING MULTIPLE INDEPENDENCE

Let Z' = (Zi,...,Zé) be distributed as a complex multi-
variate normal with mean vector ' and covariance matrix
T ((Z.-p)(Z.-L )'>=1I... W ill assume that
z. Also, let E.(gl El)(gJ ~J) ZIJ e will ass

Zi is of order p; * 1l and b = pl+...+pd. Consider the hypo-

thesis HO where

H: Ly =0 (ify=1,....d). (3.1)
Let (gij“"'%éj)’ (j=1,2,...,N). be N independent obser-
vations on g'. Also, let A = (Alm)’ where
N _ ' 1 N
Agm= L (2y57290Cpy=2n) 2= § L Zp5(2.m=1,.. . d).
3=l J=1 (3.2)
The likelihood ratio statistic for testing HO is
d
R O b (3.3)
Make the transformation u = \l/s, where s 1is a constant

to be chosen to govern the rate of convergence. The hth

moment of u is

h . P.
b T(n+=- j+1) d i ., ‘
E(uh) = {n _Ss - 1 I _LLE%Eill_ L. (3.4)
j=1 T(n-j+1) i=1 a=1 r(n+‘§-a+1)

By using the Mellin's inverse transform, the density of

u becomes




b

. h
K(b,d,pi,n) c+i el .Elf(n+§"3'*l)
f(u)=——————-——J u J dh  (3.5)
27i i d Pi b
I i\ F(n+§-a+1)
i=1l o=1
a Pi b
where K(b,d,pi,n) = I > T'(n-a+l)/ I T(n-j+1). Set
i=1 2=1 j=1
n=m+3,e = c+ms where n=XN-1 and m+§ = g where : is also
a converging factor to be chosen. Then we have
e+ie
K(b,d,p.,n) -t
F(u) = i usm—l u p(t) dt (3.86)
271 e-iw
and
P a Pi
d(t) = 1 N§+6—j+l)/II I N§+6-a+ly (3.7)
j=1 i=l a=1

By the use of formula

function, we have

log T(x+g)

for g Dbounded and B
degree r. So,
log ¢(t) =
where
v o= b

for the asymptotic expansion of gamma

log +27 + (x+g-—%) log x -X

» B .1(g)

G L t.a.2 (3.8)
r=1 r(r+l)x
r(g) is the Bernoulli polvnomial of

‘ L, = A
log s’ + log t™V + 21 .% (3.9)
r=1 t
d p.(p;+1)
(3+1) _ E i 21 (3.10)

1

i
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Pi b
218”1( 5-a+1)-i£13r+1( 6-1+1ﬂ_ (3.11)
~

i=1
Hence
- I = Q
s(t) =s” t7¥ 1+ v I, (3.12)
| - r
— r=1 t

the coefficient Qr can be obtained by the recursive equation

O
[}
i

24, Q._,, Q=1 (3.13)

fle—nrg

AY

Since 9(t) = 0(t™ "), we can use Ea. (2.5) and write 3(t)

as follows:

@
r(t+a)
ZO Ri TevarvrD) (3.14)
and a is a constant to be chosen to govern the rate of
convergence for the resultant series. Using Eq. (3.8) to

expand the gamma function on the right hand side of Eq. (3.14),

we have o A
F(t+a) _ _ . . v ij
log T(t+a+vu+1i) (v+1) logt+ = 3 (3.15)
j=1 t
where
= L:lli— (B (v+a+i) - B (a)? (3.16)
ij J@i+1) g+’ j+1 o .
Thus
. o C.:
[(t+a) = +=(J*1) iJ
TtFarory = °© [“le t‘j] (3.17)




and Cij can be recursively computed as

C.n = 1. (3.18)

L PR G geee Cao

Substituting Eq. (3.17) in Eq. (3.14) and equating the co-
efficient of same powers of t, Ri is determined explicitly

as
i-j “i-j,3" ¥’ "o . (3.19)

Now use Eqgs. (3.14), (3.12) in Eq. (3.6) and note that the
term by term integration is valid since a factorial series
is uniformly convergent in a half-plane (Doetsch (1971)).

Then we have

e+iw
o
_ sm-1 v 1 -t T(t+a)
f(u) =K(b,d,p;,n) u s jzoRj PESY J U T(t+a+r+3) dt
e-iw
(3.20)

Using Eq. (2.3) for the integral, we have

£(u) =K(b,d,py,n) s” ] R, uSPral VIl ruey) 0<uc .
Jj=0
(3.21)

Thus the c.d.f. of u in terms of incomplete beta functions

I.(+,*) 1is
voT I'(sm+a)
Prob (u<x)=K(b,d,p;,n) s jzo Ry I (Sm*a,v+)) wrgmiarssy
(3.22) 3
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where
x (a+B) a-1 g-1
Te(2.8) = J T Ty ¢ (1wt du (3.23)
0
da Pi
it T T(n-a+l)
Further expansion of K(b,d,pi,n) - 1;1 o=] and
T T'(n-j+1)
j=1
I'(sm+a) .
T(em+asv+j) Sives us that
Y @ A}
log K(b)d:pi;n) = log m + Z _-I_‘
r=1l m
where
* !-l)r r? ? Si AL
Ay = 5 BL,q(8-i+l) - T OB, (8~atl)| =--Z
r r(r+l) 1131 r+1 o1 =1 r+l I
(3.24)
and .
® Q
K(b,d,p;,n) = m” (1 + 7 ._§ ,
_ r=1 m
where
*’lflA*Q* Qg =1 3.25
QI‘ - 'r' 01 4 Sr-g "0 - . ( . )
Also
-3 A*
—(smta) -(v+3) jr
log T(sm+atvi]) log (ms) A+ Z o (3.26)
r=1 m
where
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ax = (DT

A.
, (B_. ,(a+v+j) -B_..(a)] =—1f (3.27)
jr ST r(r+l) r+l r+l sT

and
@ C*
[(sm+a) - -(v+]) jr
T(sm+a+v+j) (ms) 1+ 21 m® (3.28)
r C.
* =.l_ * * = r * =
Cir = F 1212 A%y €3 11 ;%—, Cio=1- (3.29)

Hence, Eq. (3.22) is of the form

o« Q* ] .
Prob (u < .) = [1-+ ) —3} S R, I_(sm+a,v+j)(ms)”Y
- r=lm’/ j=0 J X
@ C..
x {1+ § —I (3.30)
r=1 (sm)
= I _(sm+a,v) + ? QL G,
X i=1 m*
where
i J Q* ¢
G, = R;_; I (sm+a, u+i~j) ]oR Ti-jLj-i . (3.31)
1 =0 J 2=0 Ji-2

The exact c.d.f. can be calculated with the above formula
when the sample size n is small. A suitable choice of §
will make m large in order to expedite the convergence
of the series in Eq. (3.30).

For large sample size n, let us now examine the first

few terms of Eq. (3.30). We know that




C
01
G1 = Ix(sm+a,v) [-g— + QI} + Rl Ix(sm+a,v+1)/s (3.32)
C Q¥ ¢ C Q*
_ 02 1 ~01 * 11 1
G2-Ix(sm+a,v)(——§~+-—————~+Q2)-+R1 Ix(sm+a,v+1)[—§—+ }
S S S s
+ Ry Ix(sm+a,v+2)/s2 (3.33)

c Q* C Q* C
Gy = I (sm+a,v) [ 22 4 E 202 s 2 701, Q;}
S S S
C Q*C Q.
12 1711 2 ]
+ R1 Ix(sm+a,v+l) { 3 + 5 + —

S S S

+

Q¥
21 1
R2 Ix(sm+a,v+2) { - + —5 ] + R

Ix(sm+a,v+3)/53 (3.34)
S S

3

From Egs.(3.24), (3.25), we have

1B d Pi
Q] =AY = -3 '21 By(8-i+1) ~ ]

i : 52(5-a+1)—f (3.35)
i=1 a=1 —

Egs. (3.11), (3.13) give

Ql = Al = - SAl = - SQl (3.36)
From Eq. (3.19), we have
Rl + COl = Q1 (3.37)
Eq. (3.16), (3.18) give
. _ =1
CO1 = AO1 = -5 [82(v+a) - Bz(a)] (3.38)




By expanding Bz(x) = x2 - X + %, which is the Bernoulli
polynomial and setting
_ b(b+l)(2b+1) ¢ Py(Py*1)(2py+l)
vy = -} (3.
6 i=1 6
V.=V
_ 1
Go T T2y (3
a, = (1-v)/2 (3.
in Eq. (3.35) and (3.38), we obtain
X _ Ak _ -
A =9 =Cpp =0 (3
A1 = Q1 = Rl =0 (3.
Eence these results together with Egs. (3.11), (3.13), (3.
(3.18), (3.19) give
Ry + Cog = Q, (3
Cog = A, = % [Ba(vta_ ) - Bo(a_ )] (3
02 02 6 3 o 3' %o )
£[4 F e
Qo = A, = Ba(8 -a+l) - ) Ba(S8 -i+l)|. (3
2 26 i2] a2 340 jo1 370
By equating Eq. (3.45) and Eq. (3.46), and expanding
_ .3 3 .2 1 .
B3(x) =x" - 35X + 5 X, we obtain
2 _ (1-v3Hy
s¢ = + . (3
24A2

39)

.40)

41)

.42)

43)

16) .

.44)

43)

.46)

.47)
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If we choose so to be the positive root of Eq. (3.47), then

R2 = 0. (3.48)
Now
C Q A
2 2
_20_2.-__2.=-—2-=_A£=_Q;‘ (3.49)
S, So S,
Hence
C02 * *
5t 9 =Copt Q=0 (3.50)
s
o

In Eq. (3.19)

Ry = Qg ~ Cgq (3.51)
Egs. (3.11), (3.13) give
Q = 45 = - 3 43 = - 52 Q3 (3.52)
So
R, = - sS(Q* + EQ§) (3.53)
3 o %3 SS : )
o]
All these identities induce that
G1 = G2 =0 (3.54)
R3
Gg = 3 (I (s m +a_,v+3) - I (s m_+a_,v)) (3.55)
o
where
m, =10 - 60 . (3.56)




17
Thus by so choosing do, a, and Syr We have the c.d.f. of
u 1in asymptotic form as
Prob (u < x) = Ix(somo+ao,v)
+ L R3 (I.(s.m + v+3)
3 73 " 'x'SoMo 3y
m. s
o "o
- I (sm +a_,v)] + O(m'4) (3.57)
X"Too o o : :
_ - _ _ 2-b _ b
For d = 2, Py 1, we have Vo = b-1, a, = =, 60 = 3
S, = 1, and
Prob (X < x) = Ix(N-b,b-l) . (3.58)

Table 1 gives a comparison of the accuracy of the approx-
imation by taking the first term in (3.57) with the approxi-
mation obtained by taking the first two terms in (3.57). 1In
the table, the constant w is defined by c¢ = exp(-w/2)
where P(A<c] = a and the values of w are taken from the
tables of Krishnaiah, Lee and Chang (1976). The value of

P{i<c] 1is denoted by @, Or a, according as one term or two

terms in (3.57) are used. Also, P;=p for i=1,2,...,d.

e




TABLE 1

Significance Level Associated with the Asymptotic
Expression for the Likelihood Ratio Test for Independence

n d=3, p=1, «=0.05 d=3, p=2, a=0.05 d=5, p=2, a=0.05

. - .

w 0.1 0.2 ‘ w Cll Clz w (21 (12
10 | 1.459 .0499 .0499 ‘ 5.143 .0488 .0493 - - -
15 .923 .0499 .0499 12'987 .0498 .0499 9.746 .0454 .0472
20 .675 .0500 .0500 1 2.113 .0499 .0500 6.510 .0486 .0493
30 .439 .0502 ,0502 | 1.337 .0495 .0495 3.950 .0496 .0498

B
TABLE 1 (Continued)

n d=3, p=1, @=0.10 d=3, p=2, a=0.10 d=5, p=2, a=0.10

w 0'.1 Qz w (11 0.2 w (11 0.2
10 1.233 0998 .0999 4.679 .0982 .0991 ) - - -
15 . 780 0999 .1000 2.722 .0995 .0997 } 9.222 .0928 .0958
20 .570 1004 .1004 1.926 .0998 .0998 {6.167 .0979 .0990
30 .372 0994 .0994 1.218 .0995 .0995 3.743 .0996 .0999

o -
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4. NONNULL ASYMPTOTIC DISTRIBUTION OF THE LIKELIHOOD

RATIO TEST STATISTIC FOR INDEPENDENCE

OF TWO SETS OF VARIABLES

Consider the case d = 2, P, =P and Py = q in Section
3. (gi,gé) is distributed as complex multivariate normal

with mean vector u' and covariance matrix I where

t1
[]

(4.1)

Also, A = (Aij) is as defined in Eq. (3.2) and p £ y. The
likelihood ratio statistic for testing 212 = 0 against the

alternative 212 # 0 1is given by

- _ -1, -1
A= [ALZTA AL = T = AgpATTA  5A05
(4.2)
= |1 - R?
where R2 = diag (y?,...,Yi), Y?i...zYi and Yis are the

sample canonical correlations between Z; and Z,.
Let n = N-1 = m, *+ 50, where 50 is defined in Eq. (3.40),

and assume

(4.3)

where W 1is fixed as mj>e. Also, P2 = diag (p%,...,og)
and piz...ng are the roots of the characteristic equation

N 2
1219590807 = #7114

= 0. (4.4)
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Using the demnsity of Yl,...,Yi given in James (1964) the

th 1/s4

h moment of u = )\

comes

C.(P?) p [I(n+k;~i+1)1°
o

E(u?) = |1-P%|R ] §
K

k k! i=1 I'(n-i+1) T'(n-qgq-i+l)

P(n-q + 2 - i+1)
SO

h .
I'(n + §o+ki-1+l)

where éK(M) is the 2zonal polynomial of Hermitian matrix

M, k= (kl,kz,...,kp) is a partition of k’klikzzu-- kpzo

and k = k +...+kp. The non-null distribution is obtained by

1
using the inverse Mellin transform and by following the

argument from Eq. (3.4) to Eq. (3.29). Substituting 60, a

and s, as in Eq. (3.40), (3.41) and (3.47), we have

C _(P%) ©  Q¥(k)
[1-P?(® ] [ L [1~+ ;] X ]
k « ‘ r=]1 m

r
¢]

Prob (u < x)

X

=] .
- -3
¥ Ry(k) T, (sgm +ag,v+j+k)(m,s )

j=0
® C* (k)
X 1 + z _.\E._.._
r=1 mr
o)
Note that
B -
_______ _

» Sy 2s defined in Eq. (3.41), be-

(4.5)

’

o}

(4.6)




(somo+ao+v+j+k)

X
Ix(som°+a0'v+J+k) B [ T(sm +a_) F'(v+j+k)
0 oo "o

somo+a -1 v+j+k-1

x U ° (1-u) du (4.

is a function of k, and we have the following expressions
analogous to Egs. (3.11), (3.13), (3.16), (3.18), (3.19),
(3.24), (3.25), (3.27) and (3.29)

i
jZO Ri_j(k) Ci-j,j(k) = Q;(k), Ry(k) =1 (4.
1 r
Q) = 5 1 2ay(k) Qp_p () (4.
1=
(-7 s ;
AL(k) = e+ D) Ly [(Br+1(60+ki-1+1)-Br+1(6o-q-1+l)J(4.
1 r
C,p(k) = % leAil(k) Ci pop(K); Cip(k) =1 (4
2= ’
(="
Air(k) = (r+1) [Br+1(v+ao+k+i) - Br+1(ao)] (4.
1 r
Qr(k) = = 121 LAp(k) QF_,(k), Qf(k) =1 (4.
A*(k)=—-SL)r E B § -1 + B $ i+1
r r(rel) (&) PBraa (St * Bryy(Spmanixl)

- 28r+1(50+ki-i+1)] (4.
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o =L T gtk ct (k), C* (k) = 1 (4.15)
ir r 2;1 ig i,r-2 ! i0 :
* ) g‘lzr [
A7 (k) = B (a _+v+k+i) - B (a )] (4.16)
ir Sg r(r+l) r+l1 "o r+l1 "o
and v is defined in Eq. (3.10): here
\, = pq . (4.17)
The asymptotic expansion of |I - p21n gives
m +€O
o
1-p3" =11-3
m
o
. r
= exp E(m +50) ' : tr Wr J_‘
‘r=1 rm
o
= exp (-trWw) ’l-—l (3 trW-+1 tr W2)
- m_ o 2
-4 -‘(50 tr w2+l tr w3)
me 2 3
o
2
1. 1 2. %,
-5 (vo tr W-+§ltr woy M
-3
+ O(mO ) (4.18)
and
CpmE =& (T pk 2 ¢ (wy (4.19)
K o) < mo o) < '

since the zonal polynomial é((M) is homogeneous of degree

k. Furthermore, the use of formula for the Bernoulli




polynomial
B_(x+g) = IZI (%) B _(x)g” (4.20)
n =g T’ “n-r
shows
A{(k) = A{ + [(28_+1) k+d (x)] (4.21)
C*(k)=f-9—]4-——l-—t(2(a+)1 K + k2] 4.22
01 Sq Zso otV ) (4.22)

* = O 2 1 1 2 .2
Qz(k) = Q5 - (82+8 +3)k + 5 (25 +1)° k

- % (26,+1) & (x) + (26 _+1)ki (<) + 5 5.%(»() -3 iy ()

(4.23)
* * (ao-"v)2 1 2
Coz(k) = C02-+—~—§——~k-+5—§ [(v+ao+1) -+(ao+v)] k(k=-1)
s
o o)

6(ao+v)+8 1
+ -—~—§——-k(k-1) (k—2)-+-—§1<(k—1) (k-2) (k-3) (4.24)
8s

o [¢]

Clk) = - 2— - -2—% [(2(a_+v)+1) k + k] (4.25)

where

L 3

* = x
A7 = C = 0, Q2 + COZ

1 o1 =0 (4.26)

as in Eq. (3.42), (3.50) , by suitably chosen a,, 60, Sy, in

Eq. (3.40), (3.41), (3.+7) and él(x) , iz(K) are defined in
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(2.15). Also

Eq.

Ro(k) = Qo(k) = Coolk) = (Qq(k) = Coq(k)ICyp(k).

Now define
o*
k!

Be(som +ao,u+j) = Ix(somo+ao,v+3+k)

° exp(-86) 1%

with I (s m_+a_,~+j+k) as defined in Eq.(4.7) and

O

Substitution of Egs. (4.21) - (4.28) 1in Eg. (4.86),

application of Egs. (2.18) -~ (2.21) over < gives the

following expression for the non-null asvmptotic distri-

bution of u up to order m;2:
Prob (u < x)
= Se(somo+ao,v)
1 N . 1 2
+ m—o'| Be(somo+ao,,)(—-‘o tr W - 5 tr W)
a_+v
+ 3€(Somo+ao’V+l)(2Co - N ) tr W
a_+v 9 5
+ 8.(s m_+a_ ,v+2) l:g—oo+so ) tr W+tr W -zé— (tr W) ]
o

-

—

L 2 _1 7]
B(s m_*a_,v+3) [ES—O- (tr W)° - 5 tr W |j

and

(4.27)

(4.28)

(4.29)

(4.30)
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(o]
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_ g © _ 0 2 1
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o (o]
§ § a_+v
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a [o)

% (tr Wz)2 + Zl— tr W2 (tr W)2]
So
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4s
o

26
44
o) 2 2
- g;— + 260 + 1} (tr W)
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+ 8y(s m +a_,v+6) [-Zg; tr W2 (tr w>2-+% (tr w2)2-+g§§ (tr W)f]}
(e}

+ O(m;3) (4.31)

When the alternative hypotheses are close to the null
hypotheses, the accuracy obtained by using the first two terms
in the asymptotic expressions is sufficient for practical
purposes. When the alternative hypotheses deviate from the
null hvpothesis significantly, we require higher order terms

to obtain very good accuracy.




S. NULL ASYMPTOTIC DISTRIBUTION CF THE TEST STATISTIC

FOR MULTIPLE HOMOGENEITY OF COVARIANCE MATRICES

Let ?1""?q be independent complex p-variate normal
variables with mean vectors 91""'“ and covariance matri-
- . =

ces Zl""’“q’ respectively. Also, Let gij(g 1,.6.,Ni)
be jth independent observation on Z.,. Let H= n H_.
~1 o j=1 oJ
where Hoj(j=l,...,d) is given by
H .:Z +1=...=Z " (5.1)
°J 95 43

and

q; =3%...*a,, q;=0, q{=q1 and q;=q. (5.2)

J

The modified likelihood ratio statistic for testing HO is

given by
q*
q ng d J n* -1
A= no|Ag/mgl T, Ai/n}‘l ) (5.3)
i=1 j=1 i=q. ,+1
j-1
where
q*
n,=N, -1, n*= EJ n (5.4)
i Vi ’ J B % i’ ’
1—qj_1+1
N. N,
Zl(Z Z. )(2..-2. )" 2 L le (5.5)
A. = - . y = 5 P Lo .
1 42~ i ~ij ~1i i N1 je1~13

where z denotes the complex conjugate.

1/n

Let w=A where n=

il =0

ni and define Yi=
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where § is a covergent factor to be determined. Thus
3
X =w1/S

Y., u , where s is also a
i=q§_1+1

= *:
n; (m+4) Yi’ and Yj i

convergent factor. The hth moment of u is

h =
d ,pgy qa ph
E(uf) ={ 1 n* S c‘/ 1 nag‘o's'Yl x
a=1 2 a=1
a* h ;
p d o T(y (m+6)(1+ﬁ§)—l+l)
n nm {n E_

T(yg(m+6)-i+1)

F(Y*(m+8)~i+1)
2 (5.6)

I‘(Y:(m+6)(1+g—s y=1+1)

The modified likelihood ratio test statistic A\ and its

moments are given in Krishnaiah, Lee and Chang (1976).

Using Mellin inverse transform on E(uh), and following the
same lines as in Section 3, we have the following expression

for the c.d.f. of u:

-~

- 1 -
Prob (u < x) = I (sm+a,v) +i£1 3 G, (5.7)
where
- Ier (¥ e-1 d-1

Ix(c,d)—JFTgTd)—J u®"H(1-u)""Tdu (5.8)

(o]
i i Q* C, . .
. L Ti- -2
.= N ¢ , Vi~ - 5.9)
Gy J_Zoal_J ((smFa, v+i J)(Qio ———J‘“l—sl-z ) (

2

v = B~ (g-d) (5.10)

2

et e o
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< % s
A = f <Zi (_1)r sT Br+1(/a6'1+1)
Togm s TOPD 5
Y(l
. (5.11)
§a Bpyq(Ygd-i*1)
g=q* +1 Ye
a-1 g
_1 7 . = 5
Q. =7 Zglz BQ. i Q, =1 (5.12)
A = 219 (B,,,(v+a+i) - B, ..(a)] (5.13)
ij J(i+1) j+l j+1 )
c =-1-%2.A c L C..=1 (5.14)
i3 0 F gey7 fir Tig-nr Tio :
i
J‘ZORi-j Cij3 =9 Rg=1 (5.15)
A
A; = -~ = (5.16)
s
Q*=l§lA*Q*'Q*=1 (5.17)
TOor 2y A Tr-27 %0 )
* A'r
ALy = —L= (5.18)
S




* 1 § * * er *
C.. == L A., C. = ; C
jr r o= Jj2 Tj.r-2 ST
where Br(x) is the Bernoulli polynomial.
Now, let
a = 12V
o 2
*>
q
_ d a 1 1
n = Zl .Z * +1 7— ¥
a=l ‘g=q]_; g o

and let So be the positive root of

2 _ (1—v2)v

S
*
24A2

Then the asymptotic expression for c.d.

-3 _ .
my where m, = n - 60 is

Prob (u < x) Ix(somO + ao,v)

m':o
O wlw

1
" a3
0

- Ix(somo

+ ao,v)] + 0 (m0

4

[Ix(somO tag v+ 3)

)

(5.19)

(5.20)

(56.21)

(5.22)

(5.23)

(5 .24)
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Table 2 gives a comparison of the accuracy of the approx-
imation by taking the first term in (5.24) with the approxima-
tion obtained by taking the first two terms in (5.24). 1In the
table, the constant W is defined by c¢ = {exp(—€v/2)}l/n
where P(w<c] = o and the values of W% are taken from the
tables of Krishnaiah, Lee and Chang (1976). The value of
Plw<c] is denoted by a; or i, according as one term or two

terms in (5.24) are used. Also, qQ=-..=qq = q/d and n; =n,

for i=1,2,...,q, n=qn,.

TABLE 2

Significance Level Associated with the Asymptotic
Expression for the Likelihood Ratio Test for the
Multiple Homogeneity of the Covariance Matrices

N q d p=3, a=0.05 p=4, 2=0.05
w %1 ) w %1 )

6 3 1| 37.24 .049¢  .0500 67.84  .0490  .0493
6 5 1| 64.10 .0497  .0499 | 118.15 .0475  .0486
10 3 11} 33.21 .0500  .0500 56.45 .0499  .0500
10 5 1| 57.85 ,0499  .0499 | 100.19  .0497  .0499
20 3 1 | 30.85 .0499  .0500 50.67 .0499  .0499
20 5 1 | 54.13 .0500  .0500 90.92  .0500 .0500
10 6 3 | 46.97 .0501  .0500 81.73 .0501  .0500
10 6 2 |58.66 .0499  ,0499 | 102.21 .0498  .0499
20 6 3 |43.22 .0500  .0500 72.32  .0500 .0500
20 6 2 | 54.49 .0500  .0500 91.76 .0500 .0500
30 6 3 |42.12 .0500  .0500 69.73  .0500 .0500
30 6 2 |53.26 .0500  .0500 88.85 .0500 .0500
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The likelihood ratioc test statistic X given by Eq. (5.3)
can be expressed as
A= Kl. Ag (5.25)
where
*
qj n,
nolA;/ngl
i=q +1
j=1
A = (5.26)
J * *
qJ * Dj
A
1—Z*+1 l/nJ
qj-l
and Aj is the likelihood ratio statistic for testing Hoj’
An alternative procedure to test Ho is given below. We
accept or reject Hoj’ according as
xj 2 ca
where
P[Xj L J=1,...,d|HO]
(5.27)
d
= jzlp[xj > calﬁoj] = (l-a)

*
lﬂslnl)
The c.d.f. of xl can be obtained by replacing d, q
and n with 1, gy and n{ respectively in Eqg. (5.24); the value of

S is obtained by taking the square root of the right side
1 and a respec-

of (5.23) after replacing d and q with
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tively. We can similarly obtain the c.d.f. of xj

and determine the values of Sgy -+, S4- So, the value of c,

in (3.22) can be determined approximately.
The test procedure discussed in this section is useful
in testing the hypothesis that the diagonal blocks in the

covariance matrix of a complex multivariate normal are equal

when the off diagonal blocks are null matrices.
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6. NONNULL ASYMPTOTIC DISTRIBUTION OF THE TEST STATISTIC
FOR EQUALITY OF TWO COVARIANCE MATRICES

Here we shall consider the case for d =1 and g = 2
in the framework of Section 5. The likelihood ratio criterion

for testing the hypothesis HO: Zl=22 against the alternative

lezlfzz is based on the statistic
n n
1 2
aPB |A1 l lAzl
pnl pn2 ’A ln
ny Mo

where A=A1+A2,Aiis as defined in Eq.(5.5), and n=n,+n,.

Let
_ _ - _,1/n
n= mo-+6o, nl/n = Yl,nz/n-y2, w =2 (6.2)
where 60 is defined in Eq. (5.22) and assume that
(1) (I -z 5y =X _. W is fixed as m e
=172 Ylm ¢ fe)
° (6.3)
(ii) 0O < lim Yi <1; i=1,2
1/s
The non-null hth moment of =W ° s
= h
ph Fp[n2<ﬁ§ +l)} -n
E(ul) = o So =2 la] *
nYln Yo Fp(ny) Ty(mg)
1 "2 (6.4)
= - h
o (I-Q_l) Fp(n,k)Fp(nl(agg + 1),x)
) K
k x

fppuﬁg; + 1),«)
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where < = (kl’kz""’kp) is a partition of k and klikzi-"ikpio’

and S, is the square root of the right side of (5.23) and
= -?'l

= o

Eq. (2.9).

c,, while Fp(b) is defined in Eq. (2.8), Fp(b,c) in

The non-null distribution is obtained by using inverse
Mellin transformation and following the same lines as in Sec-

tion 3. The c¢.d.f. of u is given by

1 *
C (I-0 7) ® Qr(k)
Prob (u<x) =21 § ] K ‘mS {1+ =
- k « ‘ r=1 m
(o]
oo o C*.r
k ¢ . =3
x Y a;OKQ(k) I (s m +a,v+a)(m s ) rzl ;§l~
(€.5)
* C'i‘ 1-v
where Cj. = -%— is defined in Eq. (5.19). a_ = =5= is defined
S
o 2
in Ea. (5.20) with v = %T as defined in Eq. (5.10). Also, we
have
i »
jzo Ri_j(k) € ¢ o = Q(k), Ry(k) =1 (6.8)
: 1 ¢
Q(k) = £ lzl 24,(k) Q._p(k), Qu(k) =1 (6.7)
and
r.r
(-1)'s § B (Yod =i+1)
- o . r+l' '2°0
Ap(k) = r(r+l) .t ;Br+l(6o+ki_l+l)- T
i=1 Y2
(6.8)
_ B (g 8otk it D)
v T
1
S e,




r
QE(k) =2 T 1at(x) Qf_,(k), QY(k) =1
2=1
A* (k) (-l)r P Br+l(Ylso-i+1).ﬁBr+1(T250-1+1)
r r(r+l) igl . r Yr
1 2
b
R s
Br+l(“o+ki i+1)
From Eq. (€.3), we have
-1 I W
“ - T Yo m_
10
n
a7t = g - Y (metey)
1o
= exp[:-yl(mo+éo)[i£1 tr W ljl
L iy m )"
= exp (-tr W) [1-—2(6 tr W+o=— tr W2)
m o 27
o) 1
2, 1
- {(z—trw ~—2-trW )
m0 3{

- F(5 trw+ i tr ¥9)%) )
1

-3
+ O(mo )

2.2
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(6.9)

(6.10)

(€.11)
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Now using Eq. (4.20) for the formula of the Bernoulli poly-

nomials, we get

(-1)s By(v,3 -i+l) B,(Y,5 +k. -i+1)
A (k) =—5—2 E%szu +k -i+1) - 2220 .
i=1 °© 2 f1
(_]_)so 1 . (6.13)
= Al vt (1 - ﬁ)(kﬂal(())
s a,(x)
- ) 15,22 k_ 3
Ay(k) = 4, + = [(1—Y2) (g—+3+5 8;())
1
(€.14)
-+ __1- 5 5
- (1 Yl)(360k+300a1(<)):l
B,(Y,3 -i+1l) B, (Y,6 -i+l)
Q*(k)=A*(k)=-1§I:2 1% .2 2%
1 1 2 isy 1 Yo
=
-
IR . ,
= .-\.1 * 5 1(2:Oﬂl) k + a.l(<);
Q3(k) = F(AT(K) Q(k) + 2 a%(k))
. s o :af(q (26 +1) k&, (x)
= Qg+ L§(25o+1) kit —g— - Z:
(6.16)

o 1 1. ag(x)
F3 ) K- (8 + 3R (<) - 2 ]

1, .
-E(Q
where A,, A,, A¥, Q! are defined in Section 5, and i,(«x),
1 2 1 2 1
il(x) are defined in Eq. (2.15). By suitably chosen a_, 3

and S, s in Eq. (5.20), (5.22) and (5.23), we get




= = * = 02—
Al C01 0, Q2 + CSZ = Q§ + —;§ =0 (6.17)
o

Furthermore, from Eq. (€.6) - (6.8). we get

Q, (k) = A (k)
1
Qy(k) = (A (k) Qq(k) + 2 3,(k))
(€.18)

I1f we now substitute these identities in Eq. (6.5), apply
Egqs. (2.10) - (2.14) for the summation of zonal polynomials,
and neglect the terms of higher order of m,, we obtain the
following expression for asymptotic non-null distribution.

= T4 - . .
Prob(u<x) = Ix(somo+ao,v) to dll Ix(somo+a V) Ix(somo+ao. J+1)1]

(¢]

Q'

3
] w1, (sgmo*a,+i-1) + 0(mS%) (6.19)

where d =—(1--L) tr W
1 2 *{1

- 2 1 .2 1 1 3

Otl = f)odl +§d1 +§ (1—'\—5) tr W
1

.1 v+l 2 1 3,1 2,
g = - 3 (450-§-) dl—dl-(l-Yl) [tr W +3z (tr wy=1l

- v+l 1 2,,2_1 1 3
a3 = (§g —gg_* D dprg dpr gy o W

o 1 3Y1
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